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FREE VIBRATION OF THICK CIRCULAR
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A two-dimensional higher-order shell theory is applied to the free vibration problems of
a simply supported cylindrical shell subjected to axial stresses. The effects of higher-order
deformations such as shear deformations with thickness changes and rotatory inertia on
natural frequencies of a thick elastic circular cylindrical shells are studied. Based on the
power series expansion of displacement components, a set of fundamental dynamic
equations of a two-dimensional higher-order shell theory is derived through Hamilton’s
principle. Several sets of truncated approximate theories which can take into account the
complete effects of higher-order deformations are applied to solve the vibration problems
of a simply supported thick circular cylindrical shell. In order to assure the accuracy of
the present theory, the convergence of the natural frequencies is examined and the results
are compared with those obtained in existing theories.
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1. INTRODUCTION

A great many significant contributions can be found on vibrations of circular cylindrical
shells in the literature based upon two-dimensional shell theory. Most of them have been
developed for thin circular cylinders and very little for thick cylinders. Although thin shells
have been the thrust of the primary applications to aerospace and marine structures, much
attention is now being paid to thick shell structures. In architectural thick concrete shell
structures such as domes and cylinders, the tensile stress induced by external loads is
counteracted by the prestressing stress introduced in the in-plane circumferential or axial
direction of the shell. It is easy to control the distribution of the prestressing stress in the
shell section through the prestressing strands. Usually, two approaches have been used to
analyze thick shell structures, i.e., one is based on the three-dimensional elasticity theory
and the other, approximate two-dimensional shell theory.

It is very complicated to obtain effective solutions of the three-dimensional vibration
problems of thick elastic shells and therefore few papers dealing with the free vibrations
of thick circular cylindrical shells have appeared. Based on the three-dimensional theory
of elasticity, Armenàkas et al. [1] presented a volume containing tables of natural
frequencies and graphs of representative mode shapes of harmonic elastic waves
propagating in an infinitely long isotropic hollow cylinder. The tables may be used directly
in obtaining the frequency of standing waves propagating in simply supported shells of
finite length. A finite element method was presented by Bradford and Dong [2] for the
vibration and stability analyses of initially stressed orthotropic cylindrical shells. The
formulation is capable of treating a three-dimensional initial stress state which is radially
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symmetric. Using the ordinary Ritz’s method based on the three-dimensional theory of
elasticity, Singal and Williams [3] analyzed the free vibration problem of thick circular
cylindrical shells and rings. For the various experimental models with free–free boundary
conditions, calculated and measured resonant frequencies were compared to assess the
accuracy of the analysis. In the free vibration problem of a homogeneous isotropic thick
cylindrical shell or panel with simply supported boundaries, a three-dimensional solution
method has been presented by Soldatos and Hadjigeorgiou [4]. The governing equations
of three-dimensional linear elasticity were solved by using an iterative mathematical
approach to obtain the natural frequencies of a thick cylindrical shell which is composed
of fictious layers. Recently, So and Leissa [5] developed a three-dimensional method of
analysis for the free vibration frequencies of elastic hollow circular cylinders having all
surfaces free. The Ritz method based upon the local co-ordinates was used to achieve
accurate frequencies for free hollow circular cylinders of finite length and comparisons
were made with other three-dimensional results.

In order to take into account the influence of transverse shear deformation and rotatory
inertia, a number of authors derived modified shell theories in the past. Mirsky and
Herrmann [6] developed a Timoshenko–Mindlin-type shear deformation theory by
introducing the shear correction coefficient k2, as was done in Timoshenko beams and
Mindlin plates. The dynamic shear coefficients were determined by considering the
thickness-shear motions in axial and circumferential directions, respectively. By expanding
the shell displacement components in power series of the thickness co-ordinate, there exist
approximate two-dimensional shell theories. Upon using certain truncations of the power
series, a higher-order shell theory which can take into account the first order effects of
transverse shear deformations has been applied to cylindrical shells by Bhimaraddi [7].
Based upon a realistic parabolic variation for shear strains with zero values at the external
surfaces, the shear correction factors are not required in the theory. Transverse normal
strain is assumed to be zero and transverse normal stress in the direction of the shell
thickness is excluded. However, two-dimensional higher-order theories of circular
cylindrical shells which take into account the complete effects of shear deformations with
thickness changes and rotatory inertia have not been investigated. Recently, it has been
pointed out that neglecting higher-order deformations such as shear deformations and
thickness changes will lead to an overprediction of the natural frequency for shallow
circular arches [8] and thick circular rings [9].

This paper presents a two-dimensional higher-order theory of thick circular cylindrical
shells which can take into account the complete effects of both shear deformations with
thickness changes and rotatory inertia. Several sets of the governing equations of truncated
approximate theories are applied to the analysis of the free vibration problem of a simply
supported circular cylindrical shell subjected to axial stresses. On the basis of the power
series expansions of displacement components, a fundamental set of dynamic equations
of a two-dimensional higher-order theory for the vibration problem of thick circular
cylindrical shells is derived through Hamilton’s principle. The equations of motion of a
shell subjected to axial stresses are expressed in terms of the displacement components.
Following the Navier solution procedure, the displacement components are expanded into
Fourier series that satisfy the simply supported boundary conditions. Natural frequencies
of a circular cylindrical shell subjected to axial stresses are obtained by solving the
eigenvalue problem numerically. The convergence properties of the present numerical
solutions are shown to be accurate for the natural frequencies with respect to the order
of approximate theories. A comparison of the obtained natural frequencies is also made
with those of existing theories. Natural frequency and buckling stress for a simply
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supported circular cylindrical shell subjected to axial stress can be expressed analytically
with reference to the corresponding natural frequency for the shell without axial stress.

The present results obtained by various sets of approximate theories are considered to
be accurate enough for the natural frequencies of thick circular cylindrical shells by taking
into account the effects of shear deformations and rotatory inertia. It may be noticed that
the two-dimensional higher-order shell theory in the present paper is useful for the
vibration problem of extremely thick circular cylindrical shells.

2. FUNDAMENTAL EQUATIONS OF CIRCULAR CYLINDRICAL SHELLS

Consider a circular cylindrical shell of mean radius of curvature R, thickness H and
length L. As shown in Figure 1, a curvilinear co-ordinate system (x, y, z) is defined on
the middle surface of the circular cylindrical shell, where the x-axis is taken along the
middle surface in the circumferential direction with the y-axis in the axial direction and
the z-axis in the direction normal to the tangent to the middle surface. The dynamic
displacement components in a shell are expressed as

u0 u(x, y, z; t), v0 v(x, y, z; t), w0w(x, y, z; t), (1)

where t denotes time. The displacement components may be expanded into power series
of the thickness co-ordinate z as follows:

u= s
a

n=0

u
(n)
zn, v= s

a

n=0

v
(n)
zn, w= s

a

n=0

w
(n)
zn, (2)

where n=0, 1, 2, . . . , a.

2.1. - 

Strain components may be expanded as follows:

gab = s
a

n=0

g
(n)

ab zn, gaz = s
a

n=0

gaz

(n)
zn, gzz = s

a

n=0

gzz

(n)
zn, (3)

Figure 1. Co-ordinate and geometry of circular cylindrical shell.
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where Greek lower case subscripts indicate the co-ordinate x or y. Strain-displacement
relations can be written as (Yokoo and Matsunaga [10])

gxx

(n)
= u

(n)

,x −
1
R

w
(n)

−
1
R 0 u,x

(n−1)
−

1
R

w
(n−1)1, gyy

(n)
= v,y

(n)
, gzz

(n)
= (n+1) w

(n+1)
,

gxy

(n)
= gyx

(n)
=

1
2 0u,y

(n)
+ v,x

(n)
−

1
R

u,y

(n−1)1, (4)

gxz

(n)
=

1
2 6(n+1) u

(n+1)
−

n−1
R

u
(n)

+w,x

(n) 7, gyz

(n)
=

1
2 6(n+1) v

(n+1)
+w,y

(n) 7,
where a comma indicates partial differentiation with respect to the co-ordinate subscripts
that follow. No restrictive assumptions are made concerning the order of H/R.

2.2.   

Consider a true cylindrical shell subjected to a uniformly distributed initial axial stress,
s0, which is assumed to be constant in the axial direction. Since it is assumed that the initial
deformation due to the axial stress is axisymmetric and is uniformly distributed in the axial
direction, there is no influence of the initial deformation in the present problem.
Introducing stress components sab, saz and szz, Hamilton’s principle is applied to derive the
equations of dynamic equilibrium and natural boundary conditions of a shell. An
additional work due to the initial axial stress which is assumed to remain unchanged during
vibration is taken into consideration. Both the outer and inner surfaces of a shell are
assumed to be traction free. The principle for the present problem may be expressed for
an arbitrary time interval t1 to t2 as follows:

g
t2

t1
gV

[sxxdgxx + syydgyy +2(sxydgxy + sxzdgxz + syzdgyz)+ szzdgzz

− r(u̇du̇,x + v̇dv̇,y + ẇdẇ,z )+ s0 (u,y du,y + v,y dv,y +w,y dw,y )] dV dt=0, (5)

where the over-dot indicates partial differentiation with respect to time, r denotes the mass
density, and dV, the volume element. The volume element is given in terms of normal
curvilinear co-ordinates defined for the middle surface S by

dV= m dz dS, m=1−
z
R

. (6)

The initial axial stress is assumed to be expressed as the following power series:

s0 = s
a

l=0

s0

(l)
zl, (7)

where l=0, 1, 2, . . . , a.
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By performing the variation as indicated in equation (5), the equations of motion are
obtained as follows:

du
(n)

: 0Nxx
(n)

−
1
R

Nxx
(n+1)1,x +0Nxy

(n)

−
1
R

Nxy
(n+1)1,y

− n Qx
(n−1)

+ (n−1)
1
R

Qx
(n)

+ s
a

l=0

s
a

m=0

s0

(l)
u,yy

(m)
f(n+m+ l+1)= r s

a

m=0

f(n+m+1) ü
(m)

, (8)

dv
(n)

: Nxy
,x

(n)

+Nyy
,y

(n)

− n Qy
(n−1)

+ s
a

l=0

s
a

m=0

s0

(l)
v,yy

(m)
f(n+m+ l+1)= r s

a

m=0

f(n+m+1) v̈
(m)

, (9)

dw
(n)

:
1
R

(Nxx
(n)

−
1
R

Nxx
(n+1)

)+Qx
,x

(n)

+Qy
,y

(n)

− n T
(n−1)

+ s
a

l=0

s
a

m=0

s0

(l)
w,yy

(m)
f(n+m+ l+1)= r s

a

m=0

f(n+m+1)ẅ
(m)

, (10)

where n, m=0, 1, 2, . . . , a.
The stress resultants are defined as follows:

Nab
(n)

=g
+H/2

−H/2

msabzn dz, Qa
(n)

=g
+H/2

−H/2

msazzn dz, T
(n)

=g
+H/2

−H/2

mszzzn dz. (11)

The following functions are defined as

f(k)0 g(k)−
1
R

g(k+1), (12)

where k is an integer and

g(k)0g
+H/2

−H/2

zk−1 dz=
1
k 0H21

k

[1− (−1)k]= 802k 0H21k
(k: even)

(k: odd).
(13)

2.3.  

For elastic and isotropic materials, the constitutive relations can be written as

sxx =(D00 +E1)gxx +E1 (gyy + gzz ), syy =(D00 +E1)gyy +E1 (gxx + gzz ),

sxy = syx =D00 gxy , sxz =D00 gxz , syz =D00 gyz , (14)

szz =(D00 +E1)gzz +E1 (gxx + gyy ),

where dab is Kronecker’s delta and Lamé’s constants D00 and E1 are defined by using
Young’s modulus E and Poisson’s ratio n as follows:

D00 0
E

1+ n
, E1 0

nE
(1+ n) (1−2n)

. (15)
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2.4.  

For the equations of boundary conditions along the boundaries on the middle surface:

u
(n)

or nx Nxx
(n)

+ ny Nyx
(n)

+ s
a

l=0

s
a

m=0

ny s0

(l)
u,y

(m)
f(n+m+ l+1),

v
(n)

or ny Nyy
(n)

+ nx Nxy
(n)

+ s
a

l=0

s
a

m=0

ny s0

(l)
v,y

(m)
f(n+m+ l+1), (16)

w
(n)

or nx Qx
(n)

+ ny Qy
(n)

+ s
a

l=0

s
a

m=0

ny s0

(l)
w,y

(m)
f(n+m+ l+1),

are to be prescribed.

2.5.         

Stress resultants can be expressed in terms of the expanded displacement components.

Nxx
(n)

= s
a

m=0 6(D00 +E1)$u,x

(m)
−

1
R

w
(m)

−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%

+E1 [v,y

(m)
+ (m+1) w

(m+1)
]7 f(n+m+1), (17)

Nyy
(n)

= s
a

m=0 6(D00 +E1)v,y

(m)
+E1 $u,x

(m)
+ (m+1) w

(m+1)

−
1
R

w
(m)

−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%7 f(n+m+1), (18)

Nxy
(n)

=Nyx
(n)

=
D00

2
s
a

m=0 0u,y

(m)
+ v,x

(m)
−

1
R

u,y

(m−1)1 f(n+m+1), (19)

Qx
(n)

=
D00

2
s
a

m=0 $(m+1) u
(m+1)

−
m−1

R
u
(m)

+w,x

(m) % f(n+m+1), (20)

Qy
(n)

=
D00

2
s
a

m=0

[(m+1) v
(m+1)

+w,y

(m)
] f(n+m+1), (21)

T
(n)

= s
a

m=0 6(D00 +E1) (m+1) w
(m+1)

+E1 $u,x

(m)
+ v,y

(m)

−
1
R

w
(m)

−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%7 f(n+m+1), (22)

where n, m=0, 1, 2, . . . , a.
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2.6.          

The equations of motion can be expressed in terms of the expanded displacement
components as

s
a

m=0 $6(D00 +E1)$u,x

(m)
−

1
R

w
(m)

−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%,x

+E1 [v,y

(m)
+ (m+1) w

(m+1)
],x

+
D00

2 0u,y

(m)
+ v,x

(m)
−

1
R

u,y

(m−1) 1,y 7$f(n+m+1)−
1
R

f(n+m+2)%
+6n−1

R
D00

2 $(m+1) u
(m+1)

−
m−1

R
u
(m)

+w,x

(m) %− ru¨
(m)7 f(n+m+1)

−
nD00

2 $(m+1) u
(m+1)

−
m−1

R
u
(m)

+w,x

(m) % f(n+m)

+ s
a

l=0

s0

(l)
u,yy

(m)
f(n+m+ l+1)%=0, (23)

s
a

m=0 $6D00

2 0u,y

(m)
+ v,x

(m)
−

1
R

u,y

(m−1) 1,x

+6(D00 +E1)v,y

(m)
+E1 $u,x

(m)
+ (m+1) w

(m+1)

−
1
R

w
(m)

−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%7,y

− r v̈
(m)7 f(n+m+1)−

nD00

2 $(m+1) v
(m+1)

+w,y

(m)% f(n+m)+ s
a

l=0

s0

(l)
v,yy

(m)
f(n+m+ l+1)%=0, (24)

s
a

m=0 $1
R 6(D00 +E1)$u,x

(m)
−

1
R

w
(m)

−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%

+E1 [v,y

(m)
+ (m+1) w

(m+1)
]7$f(n+m+1)−

1
R

f(n+m+2)%
+6D00

2 0$(m+1) u
(m+1)

−
m−1

R
u
(m)

+w,x

(m)%,x

+[(m+1) v
(m+1)

+w,y

(m)
],y1

− rẅ
(m)7 f(n+m+1)− n6(D00 +E1) (m+1) w

(m+1)
+E1 $u,x

(m)
+ v,y

(m)
−

1
R

w
(m)
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−
1
R 0 u,x

(m−1)
−

1
R

w
(m−1)1%7 f(n+m)+ s

a

l=0

s0

(l)
w,yy

(m)
f(n+m+ l+1)%=0. (25)

2.7. M   

Since the fundamental equations mentioned above are complex, approximate theories
of various orders may be considered for the present problem. A set of the following
combination of displacement components for Mth (Me 1) order approximate equations
is proposed:

u= s
2M−1

m=0

u
(m)

zm, v= s
2M−1

m=0

v
(m)

zm, w= s
2M−2

m=0

w
(m)

zm, (26)

where m=0, 1, 2, 3, . . . , M.
The total number of the unknown displacement components is (6M−1). In the above

cases of M=1, an assumption of plane strains is inherently imposed. Another set of the
governing equations of the lowest order approximate theory (M=1) is derived with the
use of an assumption that the normal stress szz is zero.

Under the assumption of plane state of stresses, the shear strains gxz and gyz must vanish
through the thickness of a shell and the lowest order approximate theory reduces to the
classical shell theory.

3. FOURIER SERIES SOLUTION FOR CIRCULAR CYLINDRICAL SHELL

A simply supported circular cylindrical shell subjected to initial axial stress is analyzed
for natural frequencies and vibration modes.

Following the Navier solution procedure, displacement components are assumed for the
circumferential wave number re 1 as

u
(n)

= s
a

r=1

s
a

s=1

urs

(n)
cos

rx
R

sin
spy
L

· eivt, v
(n)

= s
a

r=1

s
a

s=1

vrs

(n)
sin

rx
R

cos
spy
L

· eivt,

w
(n)

= s
a

r=1

s
a

s=1

wrs

(n)
sin

rx
R

sin
spy
L

· eivt, (0E xE 2pR, 0E yEL), (27)

where the displacement mode number r=1, 2, 3, . . . , a and s=1, 2, 3, . . . , a, v

denotes the circular frequency and i, the imaginary unit. When the circumferential wave
number r=0, the following two types of displacement mode may be assumed:

u
(n)

= s
a

s=1

u0s

(n)
sin

spy
L

· eivt, v
(n)

= 0, w
(n)

= 0, (28)

u
(n)

= 0, v
(n)

= s
a

s=1

v0s

(n)
cos

spy
L

· eivt, w
(n)

= s
a

s=1

w0s

(n)
sin

spy
L

· eivt. (29)

Equations (28) and (29) correspond to torsional and axisymmetric vibration modes,
respectively.

The equations of motion are rewritten in terms of the generalized displacement
components urs

(n) , and vrs
(n) and wrs

(n) . The present theory yields (6M−1)-frequencies for each
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T 1

Convergence of natural frequencies and comparison with previously published results
(L/R=2, n=0·3, r= s=1, M=1–5)

H/R V CST FST M=1 M=1† M=2 M=3 M=4 M=5

0·05 V1 0·04848 0·04848 0·05014 0·04848 9 9 9 9
V2 0·1055 0·0155 0·1056 9 9 9 9 9

0·10 V1 0·09739 0·09740 0·1008 0·09741 0·09736 9 9 9
V2 0·2113 0·2116 0·2117 0·2116 9 9 9 9

0·20 V1 0·1981 0·1981 0·2054 0·1982 0.1978 9 9 9
V2 0·4247 0·4268 0·4279 0·4269 0·4272 9 9 9

0·40 V1 0·4207 0·4178 0·4354 0·4189 0·4163 9 9 9
V2 0·8662 0·8782 0·8858 0·8791 0·8815 9 9 9

0·50 V1 0·5460 0·5381 0·5622 0·5405 0·5361 0·5360 9 9
V2 1·0984 1·1165 1.1298 1.1181 1.1224 1.1225 9 9

0·80 V1 0.9387 0·9837 0·9871 0·9492 0·9365 0·9360 9 9
V2 1·8613 1·8743 1·9128 1·8802 1·8931 1·8936 1·8938 9

1·00 V1 1·3207 1·2354 1·3045 1·2552 1·2337 1·2327 9 9
V2 2·4330 2·4034 2·4629 2·4129 2·4332 2·4339 2·4345 2·4347

CST: classical shell theory (The Donnell theory [12]); FST: first order shear deformation shell theory (shear
coefficient k2 =5/6). M=1: plane strain in thickness direction; M=1†: plane stress in thickness direction (FST,
k2 =1).

combination of the displacement mode numbers r and s. In the following analysis, the axial
stress is assumed to be distributed uniformly in the thickness direction. Only the first term
of the expanded axial stress (7) is considered, i.e., s0 = s0

(0).
The dimensionless natural frequency and the initial axial stress in the y direction for

vibration problems are defined as follows:

V=vHzr/G, L=2pRHs0 /Pc , (30)

where G is the shear modulus and Pc is the minimum classical buckling load for the bending
problem of a simply supported straight beam of length L with circular cross-section of
radius R defined by

G=E/2(1+ n), Pc = p2EI/L2, I= pR4/4. (31)

4. EIGENVALUE PROBLEM OF A THICK CIRCULAR CYLINDRICAL SHELL

Equations (23)–(25) can be rewritten by collecting the coefficients for the generalized
displacements of any fixed values r and s. The generalized displacement vector {U} for the
Mth order approximate theory is expressed as

{U} T = {urs

(0)
, . . . , urs

(2M−1)
; vrs

(0)
, . . . , vrs

(2M−1)
; wrs

(0)
, . . . , wrs

(2M−2)
}. (32)

Eigenvalue problems to determine the natural frequency are generalized as follows:

([K]−V2[M]){U}=0, (33)

where matrix [K] denotes the stiffness matrix which contains the effects of axial stress and
matrix [M], the mass matrix.

In order to analyze the eigenvalue problems, equation (33) may be rewritten as follows:

0[K]−1[M]−
1
V2 [I]1{U}=0:det 0[K]−1[M]−

1
V2 [I]1=0, (34)
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where matrix [I] denotes the unit matrix. The matrix [K]−1[M] is called the dynamic matrix
in the vibration problem. The power method [11] is used to obtain the numerical solution
of the eigenvalue problems. Although all the eigenvalues and eigenvectors can be computed
by this method for each deformation mode of r and s, the dominant eigenvalues which
correspond to the lower natural frequencies are of most concern.

5. NUMERICAL EXAMPLES

5.1.  

In architectural thick concrete shell structures, an arbitrary distribution of the initial
axial stress can be introduced by the well-controlled prestressing stress to counteract the
tensile stress in the concrete. It is easy to control the distribution of the prestressing stress
in the shell section through the prestressing strands. In the numerical examples, the initial
axial stress is assumed to be distributed uniformly in the thickness direction. Natural
frequencies of a thick elastic circular cylindrical shell with simply supported boundaries

T 2

Comparison of the lowest natural frequencies V� of circular cylindrical shells
(H/R=0·18, L/R=2, n=0·3)

s r=1 r=2 r=3 r=4

P 0·05645 0·03871 0·04868 0·07627
E 0·05652 0·03929 0·04996 0·07821
B 0·05653 0·03944 0·05009 0·07833

1 S1 0·05639 0·03890 0·04897 0·07644
S2 0·05639 0·03891 0·04899 0·07651
F 0·05668 0·03999 0·05259 0·08521

CST 0·05652 0·03982 0·05237 0·08484

P 0·09473 0·08520 0·08961 0·10973
E 0·09402 0·08545 0·09093 0·11205
B 0·09409 0·08562 0·09109 0·11202

2 S1 0·09484 0·08542 0·08989 0·10988
S2 0·09485 0·08545 0·08944 0·10999
F 0·09624 0·08903 0·09793 0·12532

CST 0·09662 0·08899 0·09758 0·12470

P 0·19082 0·19554 0·20570 0·22265
E 0·18894 0·19467 0·20616 0·22450
B 0·18832 0·19403 0·20544 022361

4 S1 0·19004 0·19472 0·20476 0·22148
S2 0·19027 0·19498 0·20507 0·22186
F 0·21994 0·22970 0·24841 0·27771

CST 0·22145 0·23050 0·24832 0·27669

P 0·50529 0·51073 0·51985 0·53269
E 0·50338 0·50937 0·51934 0·53325
B 0·49818 0·50418 0·51416 0·52808

8 S1 0·49690 0·50223 0·51117 0·52374
S2 0·49850 0·50386 0·51285 0·52548
F 0·72479 0·73058 0·74057 0·75492

CST 0·72343 0·72829 0·73719 0·75058

P: present solution (M=5); E: elasticity [1]; B: higher order theory [7]; S: first order shear
deformation theory (S1, k2 = p2/12; S2; k2 =5/6). F: Flügge’s theory [13]; CST: Timoshenko
shell theory [12].
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T 3

Comparison of the first three natural frequencies v̄ with previously published results
(L/R=1, n=0·3, s=1)

Soldatos and Hadjigeorgiou
Present solution [4] Armenàkas et al. [1]

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
H/R r I II III I II III I II III

0·1 1 1·06590 2·38349 3·96351 1·06238 2·37453 3·96340 1·06226 2·37443 3·96340
2 0·88288 2·72809 4·49133 0·88260 2·71595 4·48757 0·88233 2·71586 4·48741
3 0·80615 3·16683 5·24651 0·80963 3·15331 5·23675 0·80925 3·15325 5·23646
4 0·89180 3·67573 6·13965 0·89905 3·66217 6·12255 0·89877 3·66194 6·12235
5 1·11188 4·23777 7·11638 1·12216 4·22491 7·09133 — — —

0·2 1 1·19889 2·41052 3·95339 1·18908 2·37580 3·95284 1·18889 2·37566 3·95272
2 1·09606 2·76467 4·48168 1·10121 2·71841 4·46607 1·10092 2·71819 4·46586
3 1·17627 3·20783 5·23559 1·19793 3·15695 5·19520 1·19755 3·15658 5·19492
4 1·45296 3·71741 6·12174 1·48975 3·66670 6·05090 1·48933 3·66639 6·05026
5 1·86426 4·27798 7·08158 1·91389 4·22968 6·97752 — — —

0·3 1 1·35117 2·45200 3·93519 1·33761 2·37781 3·93343 1·33727 2·37754 3·93340
2 1·30364 2·81830 4·46208 1·32371 2·72196 4·42468 1·32335 2·72149 4·42440
3 1·47300 3·26556 5·20782 1·52805 3·16159 5·11234 1·52764 3·16095 5·11162
4 1·84116 3·77428 6·06879 1·92695 3·67122 5·90307 1·92660 3·67046 5·90169
5 2·33555 4·33145 6·97350 2·44628 4·23196 6·73463 — — —

are analyzed in the following numerical examples. Since no restrictive assumptions are
made concerning the order of thickness–curvature ratio, the limit of this parameter is taken
to be H/R=1·0. The length parameter L/R is varied from 1 to 20 for short to long circular
cylindrical shells. Poisson’s ratio is fixed to be n=0·3. Only the first term of the expanded
axial stress in equation (7) is considered. All the numerical results are shown in the
dimensionless quantities.

Although the present sets of approximate theories of any order can easily be applied
to a moderately thick shell, higher orders of the expanded two-dimensional theories may
be necessary to obtain reasonably accurate solutions for an extremely thick shell. It is
noticed that the proper order of present approximate theories may be estimated according
to the level of thickness parameters H/R and H/L of the shell.

5.2.         

    

In order to verify the accuracy of the present solutions, the convergence properties of
the first two natural frequencies V1 and V2 of circular cylindrical shells without axial stress
for the displacement mode r= s=1 are shown in Table 1. It is different from the case
of plates that two types of flexural and extensional displacement modes are not separated
from each other in the case of shells. For each combination of r and s values, the present
Mth order approximate theory yields (6M−1)-frequencies in general. The dominant first
two eigenvalues which correspond to the lowest two natural frequencies are of most
concern. The lower natural frequency V1 is predominantly flexural modes with some shear
deformations, whereas the upper frequency V2 is predominantly extensional modes with
thickness changes. A direct comparison of the present frequencies with those from the
classical shell theory (CST) in which the effects of extension and rotatory inertia are
included is made. The present natural frequencies are also compared with the results of
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a first order shear deformation theory (FST) which corresponds to the Mindlin plate
theory in which a shear correction factor k2 is introduced to correct the contradictory shear
stress distribution over the thickness of the shell. It is noticed that the proper order of the
present approximate theories may be estimated according to the level of H/R and H/L.
Since the present results for M=1–4 converge accurately enough within the present order
of approximate theories, only the more accurate numerical results for M=5 are discussed
in the following.

In Table 2, a comparison of the lowest natural frequency V1 of circular cylindrical shells
with the geometric parameters H/R=0·18 and L/R=2·0 is made with the results in
Table 2 of Bhimaraddi’s paper [7]. The form of dimensionless natural frequencies V� in
Table 2 is different from that of the first equation of equations (30), i.e., V� =V/p. Another
comparison is also made with the results of Soldatos and Hadjigeorgiou [4] and Armenàkas

T 4

First two natural frequencies V1,2 of circular cylindrical shells (L/R=2, n=0·3,
M=5)

s1 =1 s=2 s=3
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

H/R r V1 V2 V1 V2 V1 V2

0 0·07852 0·07860 0·08108 0·1572 0·08471 0·2358
1 0·04848 0·1056 0·07245 0·1680 0·08141 0·2420
2 0·02822 0·1355 0·05711 0·1922 0·07391 0·2589
3 0·02012 0·1739 0·04554 0·2231 0·06674 0·2834
4 0·02273 0·2175 0·04151 0·2591 0·06344 0·3134

0·05 5 0·03183 0·2636 0·04538 0·2989 0·06568 0·3476
6 0·04441 0·3111 0·05521 0·3413 0·07336 0·3850
7 0·05953 0·3594 0·06903 0·3857 0·08549 0·4249
8 0·07689 0·4082 0·08574 0·4313 0·1011 0·4667
9 0·09634 0·4572 0·1048 0·4778 0·1194 0·5100

10 0·1178 0·5064 0·1261 0·5251 0·1401 0·5544

0 0·1574 0·1575 0·1670 0·3151 0·1912 0·4726
1 0·09736 0·2116 0·1507 0·3371 0·1867 0·4853
2 0·05963 0·2717 0·1249 0·3858 0·1787 0·5196
3 0·05639 0·3485 0·1140 0·4479 0·1775 0·5690
4 0·08133 0·4355 0·1261 0·5198 0·1900 0·6292

0·1 5 0·1203 0·5278 0·1572 0·5993 0·2169 0·6976
6 0·1682 0·6227 0·2010 0·6842 0·2562 0·7725
7 0·2232 0·7192 0·2537 0·7727 0·3052 0·8522
8 0·2844 0·8166 0·3133 0·8639 0·3618 0·9358
9 0·3511 0·9147 0·3786 0·9569 0·4247 1·0223

10 0·4226 1·0131 0·4489 1·0512 0·4928 1·1111

0 0·3176 0·3178 0·3668 0·6354 0·4957 0·9528
1 0·1978 0·4272 0·3391 0·6818 0·4933 0·9799
2 0·1397 0·5480 0·3100 0·7820 0·4983 1·0518
3 0·1834 0·7016 0·3327 0·9073 0·5304 1·1535
4 0·2887 0·8753 0·4110 1·0514 0·5976 1·2757

0·2 5 0·4227 1·0593 0·5273 1·2100 0·6967 1·4132
6 0·5750 1·2488 0·6677 1·3790 0·8205 1·5627
7 0·7405 1·4414 0·8242 1·5553 0·9628 1·7216
8 0·9158 1·6359 0·9922 1·7368 1·1186 1·8879
9 1·0985 1·8317 1·1686 1·9220 1·2845 2·0600

10 1·2867 2·0284 1·3513 2·1100 1·4581 2·2366
(continued opposite)
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T 4—continued

s=1 s=2 s=3
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

H/R r V1 V2 V1 V2 V1 V2

0 0·6555 0·6558 0·8924 1·3082 1·3513 1·9354
1 0·4163 0·8815 0·8431 1·4161 1·3476 2·0185
2 0·3686 1·1249 0·8313 1·6295 1·3713 2·1805
3 0·5724 1·4311 0·9511 1·8831 1·4650 2·3953
4 0·8849 1·7754 1·1823 2·1689 1·6365 2·6429

0·4 5 1·2405 2·1400 1·4813 2·4809 1·8727 2·9159
6 1·6180 2·5159 1·8191 2·8127 2·1560 3·2097
7 2·0077 2·8984 2·1796 3·1591 2·4720 3·5206
8 2·4040 3·2851 2·5537 3·5162 2·8103 3·8455
9 2·8038 3·6748 2·9362 3·8811 3·1637 4·1816

10 3·2052 4·0664 3·3238 4·2520 3·5276 4·5267

0 0·8359 0·8373 1·2030 1·6648 1·8355 2·4704
1 0·5360 1·1225 1·1364 1·8097 1·8239 2·5592
2 0·5053 1·4260 1·1276 2·0814 1·8446 2·7707
3 0·7949 1·8068 1·2898 2·3964 1·9577 3·0412
4 1·2110 2·2346 1·5904 2·7489 2·1715 3·3476

0·5 5 1·6738 2·6878 1·9739 3·1336 2·4675 3·6827
6 2·1582 3·1553 2·4035 3·5431 2·8229 4·0421
7 2·6531 3·6314 2·8593 3·9709 3·2190 4·4215
8 3·1531 4·1131 3·3303 4·4120 3·6426 4·8158
9 3·6549 4·5985 3·8101 4·8626 4·0847 5·2182

10 4·1567 5·0864 4·2949 5·3190 4·5393 5·6159

0 1·8600 1·9049 2·9652 3·5116 4·3884 5·4053
1 1·2328 2·4347 2·7386 3·8418 4·1913 4·7753
2 1·2561 3·0007 2·6672 4·2445 4·1199 5·0535
3 1·9257 3·7281 2·9692 4·5665 4·2711 5·3048
4 2·8166 4·5275 3·5565 4·9474 4·6317 5·6327

1·0 5 3·7736 5·1865 4·3044 5·4385 5·1489 6·0784
6 4·7477 5·7934 5·1274 6·0295 5·7622 6·6376
7 5·7119 6·4495 5·9675 6·7005 6·4184 7·2902
8 6·6250 7·1557 6·7695 7·4407 7·0721 8·0120
9 7·3964 7·9602 7·4763 8·2526 7·6833 8·7816

10 7·9927 8·8689 8·0638 9·1241 8·2242 9·5849

et al. [1] for the first three frequencies of a specific case for the axial mode number s=1
and r=1–5 in Table 3. The dimensionless frequency for this table is defined by
v̄=(1/z2) (L/H)V. It is observed that the present frequencies are in good agreement with
elasticity results [1].

5.3.     

The first two natural frequencies for each wave number of r=0–10 and s=1−3 are
shown in Table 4 for L/R=2·0 and all the values of H/R. The results are obtained for
M=5 with sufficient numerical accuracy in the approximate two-dimensional theories for
the natural frequencies of thick circular cylindrical shells by taking into account the effects
of higher-order deformations and rotatory inertia. For r=0, the first frequencies
correspond to axisymmetric vibration modes and the second ones correspond to torsional
modes.
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T 5

Lowest natural frequency V0 with vibration mode numbers and corresponding critical buckling
stress Lcr

L/R
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

H/R 2 3 4 6 8 10 20

0·05 V0 0·0201231 0·0131631 0·0102221 0·00573121 0·00428221 0·00374321 0·00136111

Lcr 0·00409231 0·00886231 0·0168921 0·0268921 0·0474521 0·0885121 0·0187211

0·10 V0 0·0563931 0·0348121 0·0240421 0·0164121 0·0143221 0·0100011 0·00272511

Lcr 0·0160731 0·0310021 0·0467321 0·110221 0·265321 0·315911 0·375311

0·20 V0 0·139721 0·0880721 0·0681621 0·0478111 0·0297211 0·0200911 0·00547311

Lcr 0·0493221 0·0992321 0·187821 0·467911 0·571411 0·637511 0·756911

0·40 V0 0·368621 0·253221 0·178211 0·0972011 0·0603811 0·0408211 0·0111211

Lcr 0·171721 0·410121 0·642011 0·966911 1·179211 1·315811 1·562411

0·50 V0 0·505321 0·331611 0·225811 0·122911 0·0763411 0·0516111 0·0140711

Lcr 0·258121 0·562711 0·824611 1·236711 1·508011 1·682711 2·001011

0·80 V0 0·936011 0·564111 0·380711 0·206111 0·127911 0·0864211 0·0235711

Lcr 0·553511 1·017711 1·465011 2·173611 2·645611 2·948911 3·509711

1·00 V0 1·232811 0·737511 0·495711 0·267711 0·166011 0·112211 0·0306111

Lcr 0·768111 1·391611 1·987011 2·933711 3·565311 3·976511 4·735511

The lowest natural frequencies for all the parameters considered are shown in Table 5,
with classification numbers of two figures on the right shoulder of natural frequencies
defining the vibration mode. The first and second figures denote the wave numbers of r
and s, respectively. Although the wave mode number r= s=1 appears remarkably for
the lowest frequencies, higher wave mode numbers of r can be observed in the case of
thinner and shorter shells.

Figure 2. Natural frequency versus circumferential mode number curves (L/R=2, r=0–10). V1: ——q , s=1;
——w , s=2; ——r , s=3. V2 =—q—, s=1; —w—, s=2; —r—, s=3. (a) H/R=0·2; (b) H/R=0·5.
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Figure 3. Natural frequency versus axial mode number curves (L/R=2, s=1–10). V1: ——q , r=0; ——w , r=1;
——r , r=2; ——+ , r=3. V2 =—q—, r=0; —w—, r=1; —r—, r=2; —+—, r=3. (a) H/R=0·2; (b)
H/R=0·5.

5.4.       

The first two natural frequencies without axial stress are plotted in Figures 2 and 3.
Figure 2 shows the variations of the first two natural frequencies for s=1–3 with respect
to r=0–10. Although, in general, the natural frequencies increase as the circumferential
wave number r grows, the lowest frequencies occur at specific higher modes in the case
of the first natural frequencies. The first and second natural frequencies for r=0 and s=1
are very close to each other. Figure 3 shows the variations of the first two natural
frequencies for r=0–3 with respect to s=1–10. Both of the first and second natural
frequencies increase monotonically as the axial wave number s grows, the lowest
frequencies occurring at the first modes s=1.

Figure 4. Natural frequency versus axial stress curves (L/R=2, s=1). V1: ——q , r=0; ——w , r=1; ——r , r=2;
——+ , r=3. V2 =—q—, r=0; —w—, r=1; —r—, r=2; —+—, r=3. (a) H/R=0·2; (b) H/R=0·5.
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5.5.      

The natural frequency of a circular cylindrical shell subjected to initial axial stress can
be obtained by solving numerically the eigenvalue problem (34) and plotted for r=0–3
and s=1 in Figure 4. In the case of r=0, the lowest two natural frequencies which
correspond to axisymmetric and torsional vibration modes, respectively, are very close to
each other and cannot be distinguished in the figure. When the first natural frequency goes
to zero, the critical buckling stresses are also shown in the figure for each vibration mode.

However, in the case of a simply supported circular cylindrical shell subjected to initial
axial stress L, the natural frequency Va can be expressed explicitly with reference to the
natural frequency V0 of a shell without axial stress. The relation between Va and V0 can
be otbained from a comparison of the equations of motion as follows

V2
a =V2

0 +
(1+ n)s2p4

4 0RH1
3

0HL1
4

L. (35)

When the natural frequency Va goes to zero under the axial stress L, elastic buckling occurs
and the critical buckling stress Lcr relates with the natural frequency V0 as

Lcr =−
4

(1+ n)s2p4 0HR1
3

0L
H1

4

V2
0 . (36)

The critical buckling stress of simply supported circular cylindrical shells subjected to
initial axial stress can be predicted from the natural frequency of the shell without axial
stress. The calculated critical buckling stresses corresponding to the lowest natural
frequencies and vibration mode numbers are also shown in Table 5. These buckling stresses
do not necessarily coincide with the lowest critical buckling stresses of the shells which may
occur at different displacement mode numbers from the case of the lowest natural
frequencies.

6. CONCLUSIONS

Natural frequencies of thick circular cylindrical shells calculated by using the previously
published thin shell theories are usually overpredicted. In order to analyze the complete
effects of higher-order deformations on the natural frequencies of thick circular cylindrical
shells, various orders of the expanded approximate shell theories have been presented. It
has been shown that shear deformations and thickness changes have an important effect
on the natural frequencies of thick circular cylindrical shells with or without axial stress,
and the following conclusions may be drawn from the present analysis.

The natural frequencies of thick circular cylindrical shells calculated by using the
classical thin shell theory are usually overpredicted. It has been pointed out that shear
deformations and rotatory inertia have an important effect on the natural frequencies of
thick circular cylindrical shells. It is very important to take into account the complete
effects of higher-order deformations such as shear deformations with thickness changes
and rotatory inertia for the analysis of vibration problems of thick circular cylindrical
shells.

In order to verify the accuracy of the present results, the convergence properties of the
numerical solutions according to the order of approximate theories have ben examined.
Without the assumption of H/RW 1, the present results obtained for M=5 are considered
to be accurate enough for thick circular cylindrical shells. It may be noted that the
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two-dimensional higher-order shell theory in the present paper can predict the natural
frequencies of a thick circular cylindrical shell.

In the case of a simply supported circular cylindrical shell subjected to axial stress, the
natural frequency can be expressed explicitly with reference to the natural frequency of
a shell without axial stress. When the natural frequency goes to zero under axial
compressions, elastic buckling occurs. The critical buckling stress can also be expressed
in terms of the natural frequency of a shell without axial stress.
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